A 2-D CFD model of a free piston stirling engine for space applications with annular heat exchangers
Collection of Technical Papers - 2nd International Energy Conversion Engineering Conference, Vol: 1, Page: 532-546
2004
- 10Citations
- 29Usage
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- 10
- CrossRef4
- Usage29
- Abstract Views29
- Captures4
- Readers4
Conference Paper Description
The CFD-ACE commercial code has been utilized for a 2-D model of a Free Piston Stirling Engine (FPSE). Several code validations were conducted including laminar flow in oscillatory pipe and parallel plate flows. The CFD results showed good agreement with available experimental data as well as analytical solutions. The 2-D model consisted of an Expansion Space (ES), Heater (HR), Regenerator (RG), Cooler (CR) and Compression Space (CS). The HR and CR were modeled as concentric fins, while the RG utilizes the CFD-ACE porous media model. CFD data were obtained for the PV power from the ES and CS as well as heat in and out of the heat exchangers. The model for the FPSE was conducted for two grids, coarse (64,823 cells) and fine (133,078 cells) and includes the CS, CR, RG, HR and ES. Both the power piston and displacer were also modeled. Results were obtained for energy in and out from each component including enthalpy flux at both sides of the regenerator. The CFD-ACE porous media model was utilized (which is known not to accurately represent the unsteady heat transfer process in the regenerator due to the assumption of gas-solid temperature equilibrium). The results obtained for 110 cycles (coarse grids) and 100 cycles (fine grids) were compared with Sage results. The codes for both cases seem to head towards the right direction of energy balance. The similarities and differences among the different cases were examined and discussed in the paper. Two approaches have been proposed to accelerate the convergence process: 1) Replace the solid walls (as much as possible, e.g. in the heater and cooler) by a uniform temperature surface. This might accelerate the convergence of the CFD process but will alter the B.C., which would result in different heat transfer rates, 2) Model computationally each component separately and merge them one at a time using user subroutine in CFD-ACE. Both approaches have been attempted and the results are encouraging. Copyright © 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=20344401839&origin=inward; http://dx.doi.org/10.2514/6.2004-5583; http://arc.aiaa.org/doi/10.2514/6.2004-5583; http://arc.aiaa.org/doi/pdf/10.2514/6.2004-5583; https://engagedscholarship.csuohio.edu/enme_facpub/255; https://engagedscholarship.csuohio.edu/cgi/viewcontent.cgi?article=1252&context=enme_facpub
American Institute of Aeronautics and Astronautics (AIAA)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know