Application of Active Magnetic Force Actuator for Control of Flexible Rotor System Vibrations
2011
- 389Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage389
- Downloads370
- Abstract Views19
Thesis / Dissertation Description
The purpose of this work was to develop and experimentally demonstrate a novel approach to minimize lateral vibrations of flexible rotor. The applied feed forward control approach employed magnetic force actuator to inject a specially designed force to counteract the rotor unbalance force. By specific selection of frequency and phase as functions of the rotor running speed and rotor natural frequency, the proposed simplified injection waveform has been shown to be effective both in reducing the rotor's vibrations and for hardware implementation. A model of the test rig was constructed using the finite element (FE) method and was validated using experimental data. The effectiveness of the proposed current injection was numerically simulated with FE model and experimentally validated using a residual unbalance force. It was noticed that at a selected constant running speed, just below the first rotor critical speed, the rotor vibrations were reduced approximately by 90 . The method was also implemented during the speed ramp test, which passes through the first critical speed. In this test the proposed force injection also reduced vibrations at various rotor speeds. These results agree well with the results of simulation
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know