Conversion of Soluble Recalcitrant Phosphorus to Recoverable Orthophosphate Form Using UV/H2O2
Chemosphere
2021
- 82Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage82
- Downloads61
- Abstract Views21
Article Description
Soluble non-reactive phosphorus (sNRP), such as inorganic polyphosphates and organic P, is not effectively removed by conventional physicochemical processes. This can impede water resource reclamation facilities’ ability to meet stringent total P regulations. This study investigated a UV/H2O2 advanced oxidation process (AOP) for converting sNRP to the more readily removable/recoverable soluble reactive P (sRP), or orthophosphate, form. Synthetic water spiked with four sNRP compounds (beta-glycerol phosphate, phytic acid, triphosphate, and hexa-meta phosphate) at varying H2O2 concentration, UV fluence, pH, and temperature was initially tested. These compounds represent simple, complex, organic, and inorganic forms of sNRP potentially found in wastewater. The efficiency of sNRP to sRP conversion depended on whether the sNRP compound was organic or inorganic and the complexity of its chemical structure. Using 1 mM H2O2 and 0.43 J/cm2 (pH 7.5, 22 °C), conversion of the simple organic beta-glycerol phosphate to sRP was 38.1 ± 2.9%, which significantly exceeded the conversion of the other sNRP compounds. Although conversion was achieved, the electrical energy per order (EEO) was very high at 5.2 × 103 ± 5.2 × 102 kWh/m3. Actual municipal wastewater secondary effluent, with sNRP accounting for 15% of total P, was also treated using UV/H2O2. No wastewater sNRP to sRP conversion was observed, ostensibly due to interference from wastewater constituents. Wastewater utilities that have difficulty meeting stringent P levels might be able to target simple organic sNRP compounds, though alternative processes beyond UV/H2O2 need to be explored to overcome interference from wastewater constituents and target more complex organic and inorganic sNRP compounds.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know