Bayesian decision theoretic approach to hypothesis problems with skewed alternatives
Journal of Statistical Planning and Inference
2010
- 38Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage38
- Abstract Views38
Article Description
Many hypothesis problems in practice require the selection of the left side or the right side alternative when the null is rejected. For parametric models, this problem can be stated as H0:θ=θ0vs.H−:θ<θ0 or H+:θ>θ0. Frequentists use Type-III error (directional error) to develop statistical methodologies. This approach and other approaches considered in the literature do not take into account the situations where the selection of one side may be more important or when one side may be more probable than the other. This problem can be tackled by specifying a loss function and/or by specifying a hierarchical prior structure with allowing the skewness in the alternatives. Based on this, we develop a Bayesian decision theoretic methodology and show that the resulted Bayes rule perform better in the side of the alternatives which is more probable. The methodology can be also used in a frequentist's framework when it is desired to discover an alternative that is more important. We also consider the multiple hypotheses problem and develop new false discovery rates for the selection of the left and the right sides of alternatives. These discovery rates would be useful in the situations when one side of the alternatives are more important or more probable than the other.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know