Stochastic Modeling for Mobile Manipulators
2021
- 228Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage228
- Downloads190
- Abstract Views38
Thesis / Dissertation Description
Mobile manipulators are valuable and highly desired in many fields, especially in industrial environments. However, determining the end effector position has been challenging for scenarios where the base moves at the same time that the arm follows commands to perform specific tasks. Earlier works have attempted to dynamically evaluate the problem of positioning error for mobile manipulators, but there is still room for further improvement. In this thesis, we devise a dynamical model that leverages stochastic search strategies for mobile manipulators. More specifically, we develop a dynamic model that estimates the position of the robot using an Unscented Kalman filter. Simulations using the Robot Operating System (ROS) and Gazebo were carried out to evaluate our model. Our results for the stochastic method show that it outperforms a deterministic approach (spiral search) under specific Kalman filter covariances of the process and observation noises. Compared to the state of the art, our proposed approach is more robust and efficient, proving to work under different arrangement scenarios with significant better performance.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know