Distribution and Dynamics of Nitrogen and Microbial Plankton in Southern Lake Michigan During Spring Transition 1999-2000
Journal of Geophysical Research, Vol: 109, Issue: 0
2004
- 100Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage100
- Downloads96
- Abstract Views4
Article Description
[ 1] Ammonium and amino acid fluxes were examined as indicators of N and microbial food web dynamics in southern Lake Michigan during spring. Either (NH4+)-N-15 or a mixture of N-15-labelled amino acids (both at 4 muM N final concentration) was added to Lake Michigan water. Net fluxes were measured over 24 h under natural light and dark conditions using deck-top incubators and compared to microbial food web characteristics. Isotope dilution experiments showed similar light and dark NH4+ regeneration rates at lake ( 6 versus 5 nM N h(-1)) and river-influenced ( 20 versus 24 nM N h(-1)) sites. Ammonium uptake rates were similar to regeneration rates in dark bottles. Dark uptake ( attributed mainly to bacteria) accounted for -70% of total uptake ( bacteria plus phytoplankton) in the light at most lake sites but only -30% of total uptake at river-influenced sites in or near the St. Joseph River mouth (SJRM). Cluster analysis grouped stations having zero, average, or higher than average N-cycling rates. Discriminant analysis indicated that chlorophyll concentration, oligotrich ciliate biomass, and total P concentration could explain 66% of N-cycling rate variation on average. Heterotrophic bacterial N demand was about one third of the NH4+ regeneration rate. Results suggest that, with the exception of SJRM stations, bacterial uptake and protist grazing mediated much of the N dynamics during spring transition. Since NH4+ is more available to bacteria than NO3-, regenerated NH4+ may have a strong influence on spring, lake biochemical energetics by enhancing N-poor organic matter degradation in this NO3--replete ecosystem.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know