Transferring expectations in model-based reinforcement learning
Advances in Neural Information Processing Systems 25 (NIPS 2012), Vol: 4, Page: 2555-2563
2012
- 14Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage14
- Abstract Views14
Conference Paper Description
We study how to automatically select and adapt multiple abstractions or representations of the world to support model-based reinforcement learning. We address the challenges of transfer learning in heterogeneous environments with varying tasks. We present an efficient, online framework that, through a sequence of tasks, learns a set of relevant representations to be used in future tasks. Without predefined mapping strategies, we introduce a general approach to support transfer learning across different state spaces. We demonstrate the potential impact of our system through improved jumpstart and faster convergence to near optimum policy in two benchmark domains.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know