Online ARIMA algorithms for time series prediction
AAAI-16: Proceedings of Thirtieth AAAI Conference on Artificial Intelligence: Phoenix, Arizona USA, 2016 February 12-17, Page: 1867-1873
2016
- 696Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage696
- Downloads371
- Abstract Views325
Conference Paper Description
Autoregressive integrated moving average (ARIMA) is one of the most popular linear models for time series forecasting due to its nice statistical properties and great flexibility. However, its parameters are estimated in a batch manner and its noise terms are often assumed to be strictly bounded, which restricts its applications and makes it inefficient for handling large-scale real data. In this paper, we propose online learning algorithms for estimating ARIMA models under relaxed assumptions on the noise terms, which is suitable to a wider range of applications and enjoys high computational efficiency. The idea of our ARIMA method is to reformulate the ARIMA model into a task of full information online optimization (without random noise terms). As a consequence, we can online estimation of the parameters in an efficient and scalable way. Furthermore, we analyze regret bounds of the proposed algorithms, which guarantee that our online ARIMA model is provably as good as the best ARIMA model in hindsight. Finally, our encouraging experimental results further validate the effectiveness and robustness of our method.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know