Cache-Efficient Fork-Processing Patterns on Large Graphs
Proceedings of the ACM SIGMOD International Conference on Management of Data, ISSN: 0730-8078, Page: 1208-1221
2021
- 8Citations
- 54Usage
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations8
- Citation Indexes8
- CrossRef3
- Usage54
- Downloads45
- Abstract Views9
- Captures14
- Readers14
- 14
Conference Paper Description
As large graph processing emerges, we observe a costly fork-processing pattern (FPP) that is common in many graph algorithms. The unique feature of the FPP is that it launches many independent queries from different source vertices on the same graph. For example, an algorithm in analyzing the network community profile can execute Personalized PageRanks that start from tens of thousands of source vertices at the same time. We study the efficiency of handling FPPs in state-of-the-art graph processing systems on multi-core architectures, including Ligra, Gemini, and GraphIt. We find that those systems suffer from severe cache miss penalty because of the irregular and uncoordinated memory accesses in processing FPPs. In this paper, we propose ForkGraph, a cache-efficient FPP processing system on multi-core architectures. In order to improve the cache reuse, we divide the graph into partitions each sized of LLC (last-level cache) capacity, and the queries in an FPP are buffered and executed on the partition basis. We further develop efficient intra- and inter-partition execution strategies for efficiency. For intra-partition processing, since the graph partition fits into LLC, we propose to execute each graph query with efficient sequential algorithms (in contrast with parallel algorithms in existing parallel graph processing systems) and present an atomic-free query processing method by consolidating contending operations to cache-resident graph partition. For inter-partition processing, we propose two designs, yielding and priority-based scheduling, to reduce redundant work in processing. Besides, we theoretically prove that ForkGraph performs the same amount of work, to within a constant factor, as the fastest known sequential algorithms in FPP queries processing, which is work efficient. Our evaluations on real-world graphs show that ForkGraph significantly outperforms state-of-the-art graph processing systems (including Ligra, Gemini, and GraphIt) with two orders of magnitude speedups.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85108962945&origin=inward; http://dx.doi.org/10.1145/3448016.3457253; https://dl.acm.org/doi/10.1145/3448016.3457253; https://ink.library.smu.edu.sg/sis_research/6136; https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=7139&context=sis_research; https://dx.doi.org/10.1145/3448016.3457253
Association for Computing Machinery (ACM)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know