Learning to Match Anchor-Target Video Pairs with Dual Attentional Holographic Networks
IEEE Transactions on Image Processing, ISSN: 1941-0042, Vol: 30, Page: 8130-8143
2021
- 4Citations
- 13Usage
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
- Usage13
- Abstract Views13
- Captures5
- Readers5
Article Description
Video hyperlinking is the task of linking two video fragments/clips based on their multi-modal contents. Specifically, given an anchor video as a query, machine techniques automatically generate links between the anchor and target videos by modeling and comparing their content aboutness. The term 'aboutness' specifically refers to contextually relevant multimedia content, i.e., a fragment is on or of something. Since video contents are multi-modal (e.g., audio and vision), the content aboutness may be reflected across different modalities. Existing approaches regard hyperlinking as a retrieval task, by embedding multi-modal video contents into one or multiple common video representation space(s) for cross-modal comparison. As a result, the aboutness between videos is scored by computing the vector-distance based similarity in the learnt common feature space. However, these methods suffer from two main limitations: (1) the video modality descriptors/features are treated equally in representation learning, which hinders the effective modeling of their respective capabilities in linking; and (2) directly using the vector-distance based similarity to measure aboutness bears the risk of returning more duplicates. This paper focuses on addressing these two problems. Specifically, we firstly build attentional neural networks to learn a compact fragment-level representation, assigning different importance weights to different descriptor/feature contents by an attention mechanism. We believe that the potentially interesting content(s) should be highlighted in the representation. Furthermore, instead of directly computing the similarity of two representation embeddings, we secondly build a holographic composition network to model the aboutness for link establishment, with the core use of circular correlation. The two networks string together to form the final hyperlinking matching system. The entire model is trained in an end-to-end fashion. We examine its effectiveness by creating four train/validate/test partitioning schemes on the Blip10000 dataset and employing two video fragmentation methods.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85115805709&origin=inward; http://dx.doi.org/10.1109/tip.2021.3113165; http://www.ncbi.nlm.nih.gov/pubmed/34559649; https://ieeexplore.ieee.org/document/9547825/; https://ink.library.smu.edu.sg/sol_research/3612; https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=5570&context=sol_research; https://ink.library.smu.edu.sg/sis_research/6821; https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=7824&context=sis_research
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know