Towards an Optimal Outdoor Advertising Placement: When a Budget Constraint Meets Moving Trajectories
ACM Transactions on Knowledge Discovery from Data, ISSN: 1556-472X, Vol: 14, Issue: 5, Page: 1-32
2020
- 13Citations
- 77Usage
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations13
- Citation Indexes13
- 13
- CrossRef4
- Usage77
- Downloads60
- Abstract Views17
- Captures11
- Readers11
- 11
Article Description
In this article, we propose and study the problem of trajectory-driven influential billboard placement: given a set of billboards U (each with a location and a cost), a database of trajectories T, and a budget L, we find a set of billboards within the budget to influence the largest number of trajectories. One core challenge is to identify and reduce the overlap of the influence from different billboards to the same trajectories, while keeping the budget constraint into consideration. We show that this problem is NP-hard and present an enumeration based algorithm with (1-1/e) approximation ratio. However, the enumeration would be very costly when |U| is large. By exploiting the locality property of billboards' influence, we propose a partition-based framework PartSel. PartSel partitions U into a set of small clusters, computes the locally influential billboards for each cluster, and merges them to generate the global solution. Since the local solutions can be obtained much more efficiently than the global one, PartSel would reduce the computation cost greatly; meanwhile it achieves a non-trivial approximation ratio guarantee. Then we propose a LazyProbe method to further prune billboards with low marginal influence, while achieving the same approximation ratio as PartSel. Next, we propose a branch-and-bound method to eliminate unnecessary enumerations in both PartSel and LazyProbe, as well as an aggregated index to speed up the computation of marginal influence. Experiments on real datasets verify the efficiency and effectiveness of our methods.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85092327359&origin=inward; http://dx.doi.org/10.1145/3350488; https://dl.acm.org/doi/10.1145/3350488; https://ink.library.smu.edu.sg/sis_research/7128; https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=8131&context=sis_research; https://dx.doi.org/10.1145/3350488
Association for Computing Machinery (ACM)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know