Graph contrastive learning with stable and scalable spectral encoding
Proceedings of the 37th Conference on Neural Information Processing Systems (NeurIPS 2023), New Orleans, December 10-16, Page: 1-17
2023
- 90Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage90
- Downloads56
- Abstract Views34
Conference Paper Description
Graph contrastive learning (GCL) aims to learn representations by capturing the agreements between different graph views. Traditional GCL methods generate views in the spatial domain, but it has been recently discovered that the spectral domain also plays a vital role in complementing spatial views. However, existing spectral-based graph views either ignore the eigenvectors that encode valuable positional information, or suffer from high complexity when trying to address the instability of spectral features. To tackle these challenges, we first design an informative, stable, and scalable spectral encoder, termed EigenMLP, to learn effective representations from the spectral features. Theoretically, EigenMLP is invariant to the rotation and reflection transformations on eigenvectors and robust against perturbations. Then, we propose a spatial-spectral contrastive framework (Sp2GCL) to capture the consistency between the spatial information encoded by graph neural networks and the spectral information learned by EigenMLP, thus effectively fusing these two graph views. Experiments on the node- and graph-level datasets show that our method not only learns effective graph representations but also achieves a 2–10x speedup over other spectral-based methods.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know