Where is My Spot? Few-shot Image Generation via Latent Subspace Optimization
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, ISSN: 1063-6919, Vol: 2023-June, Page: 3272-3281
2023
- 14Citations
- 25Usage
- 27Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations14
- Citation Indexes14
- 14
- Usage25
- Downloads18
- Abstract Views7
- Captures27
- Readers27
- 27
Conference Paper Description
Image generation relies on massive training data that can hardly produce diverse images of an unseen category according to a few examples. In this paper, we address this dilemma by projecting sparse few-shot samples into a continuous latent space that can potentially generate infinite unseen samples. The rationale behind is that we aim to locate a centroid latent position in a conditional StyleGAN, where the corresponding output image on that centroid can maximize the similarity with the given samples. Although the given samples are unseen for the conditional StyleGAN, we assume the neighboring latent subspace around the centroid belongs to the novel category, and therefore introduce two latent subspace optimization objectives. In the first one we use few-shot samples as positive anchors of the novel class, and adjust the StyleGAN to produce the corresponding results with the new class label condition. The second objective is to govern the generation process from the other way around, by altering the centroid and its surrounding latent subspace for a more precise generation of the novel class. These reciprocal optimization objectives inject a novel class into the StyleGAN latent subspace, and therefore new unseen samples can be easily produced by sampling images from it. Extensive experiments demonstrate superior few-shot generation performances compared with state-of-the-art methods, especially in terms of diversity and generation quality. Code is available at https://github.com/chansey0529/LSO.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85167957444&origin=inward; http://dx.doi.org/10.1109/cvpr52729.2023.00319; https://ieeexplore.ieee.org/document/10204638/; https://ink.library.smu.edu.sg/sis_research/8447; https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=9450&context=sis_research
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know