DeepArc: Modularizing Neural Networks for the Model Maintenance
Proceedings - International Conference on Software Engineering, ISSN: 0270-5257, Page: 1008-1019
2023
- 6Citations
- 20Usage
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations6
- Citation Indexes6
- Usage20
- Downloads18
- Abstract Views2
- Captures14
- Readers14
- 14
Conference Paper Description
Neural networks are an emerging data-driven programming paradigm widely used in many areas. Unlike traditional software systems consisting of decomposable modules, a neural network is usually delivered as a monolithic package, raising challenges for some maintenance tasks such as model restructure and re-adaption. In this work, we propose DeepArc, a novel modularization method for neural networks, to reduce the cost of model maintenance tasks. Specifically, DeepArc decomposes a neural network into several consecutive modules, each of which encapsulates consecutive layers with similar semantics. The network modularization facilitates practical tasks such as refactoring the model to preserve existing features (e.g., model compression) and enhancing the model with new features (e.g., fitting new samples). The modularization and encapsulation allow us to restructure or retrain the model by only pruning and tuning a few localized neurons and layers. Our experiments show that (1) DeepArc can boost the runtime efficiency of the state-of-the-art model compression techniques by 14.8%; (2) compared to the traditional model retraining, DeepArc only needs to train less than 20% of the neurons on average to fit adversarial samples and repair under-performing models, leading to 32.85% faster training performance while achieving similar model prediction performance.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85171781750&origin=inward; http://dx.doi.org/10.1109/icse48619.2023.00092; https://ieeexplore.ieee.org/document/10172675/; https://ink.library.smu.edu.sg/sis_research/9316; https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=10316&context=sis_research
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know