A novel deep learning framework for intrusion detection system
2019 International Conference on Advances in the Emerging Computing Technologies, AECT 2019, Page: 1-6
2020
- 2Citations
- 5Usage
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- CrossRef1
- Usage5
- Abstract Views5
- Captures10
- Readers10
- 10
Conference Paper Description
Rapid increase of network devices have brought several complexities in today's network data. Deep learning algorithms provides better solution for analyzing complex network data. Several deep learning algorithms have been proposed by researchers for identifying either known or unknown intrusions present in network traffic. But, in real time, incoming network traffic might encounter with known or unknown intrusions. Presence of unknown intrusions in network traffic arises a need to bring a framework that can identify both known and unknown network traffic intrusions. This paper is an attempt to bring a novel deep learning framework that can identify both known or unknown attacks with maximum 82% accuracy. Also, the particular category of known attack will be revealed via proposed framework. Proposed framework is a novel integration of two well known deep learning algorithms autoencoder and LSTM that brings an effective intrusion detection system. We believe that deployment of proposed framework in real time network will bring improvement in the security of future internet.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85092379407&origin=inward; http://dx.doi.org/10.1109/aect47998.2020.9194224; https://ieeexplore.ieee.org/document/9194224/; https://ir.iba.edu.pk/faculty-research-series/70; https://ir.iba.edu.pk/cgi/viewcontent.cgi?article=1069&context=faculty-research-series
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know