A New Diagnostic Test for Regression
2013
- 1,210Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage1,210
- Downloads1,055
- 1,055
- Abstract Views155
Article Description
A new diagnostic test for regression and generalized linear models is discussed. The test is based on testing if the residuals are close together in the linear space of one of the covariates are correlated. This is a generalization of the famous problem of spurious correlation in time series regression. A full model building approach for the case of regression was developed in Mahdi (2011, Ph.D. Thesis, Western University, ”Diagnostic Checking, Time Series and Regression”) using an iterative generalized least squares algorithm. Simulation experiments were reported that demonstrate the validity and utility of this approach but no actual applications were developed. In this thesis, the application of this hidden correlation paradigm is further developed as a diagnostic check for both regression and more generally for generalized linear models. The utility of the new diagnostic check is demonstrated in actual applications. Some simulation experiments illustrating the performance of the diagnostic check are also presented. It is shown that in some cases, existing well-known diagnostic checks can not easily reveal serious model inadequacy that is detected using the new approach.KEY WORDS: diagnostic test, regression, hidden correlation, generalized linear models
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know