Magnetic Stimulation on the Growth of the Microalga Nannochloropsis oculata
2017
- 1,181Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage1,181
- Downloads958
- Abstract Views223
Article Description
Fossil fuels, our principal sources of energy supply, are non-renewable and research is needed on alternatives that are renewable and potentially more environmentally friendly. Microalgae have been investigated as a future feedstock alternative to petroleum but the technology is still expensive and improvements are needed. Reduction in costs might be achieved by increasing algal biomass and lipid productivity. The lipids can be used to produce biofuels such as biodiesel and biojet fuel. The marine microalga Nannochloropsis oculata grows well and can accumulate high lipid content. In this study, the effects of static magnetic field stimulation (SMF) of 0 (control), 5, 10 and 15 mT were investigated in terms of growth and biochemical composition of this microalga. In comparison to the control, the cells grown at 10 mT had the highest increase in biomass productivity (45%) and lipid productivity (57%) in addition to increase in other co-product yields. Some of the co-products could potentially be used for high value-added applications, thus helping to offset costs even further. The use of magnetic field stimulation on microalgae is a promising technique to enhance growth and productivity, and Nannochloropsis oculata was shown in this study to be a suitable microalgae species to be considered for biodiesel applications.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know