Ranking comments: An Entropy-based Method with Word Embedding Clustering
2020
- 775Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage775
- Downloads688
- Abstract Views87
Article Description
Automatically ranking comments by their relevance plays an important role in text mining and text summarization area. In this thesis, firstly, we introduce a new text digitalization method: the bag of word clusters model. Unlike the traditional bag of words model that treats each word as an independent item, we group semantic-related words as clusters using pre-trained word2vec word embeddings and represent each comment as a distribution of word clusters. This method can extract both semantic and statistical information from texts. Next, we propose an unsupervised ranking algorithm that identifies relevant comments by their distance to the “ideal” comment. The “ideal” comment is the maximum general entropy comment with respect to the global word cluster distribution. The intuition is that the “ideal” comment highlights aspects of a product that many other comments frequently mention. Therefore, it can be regarded as a standard to judge a comment’s relevance to this product. At last, we analyze our algorithm’s performance on a real Amazon product.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know