Recover Data in Sparse Expansion Forms Modeled by Special Basis Functions
2019
- 331Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage331
- Downloads181
- Abstract Views150
Thesis / Dissertation Description
In data analysis and signal processing, the recovery of structured functions (in terms of frequencies and coefficients) with respect to certain basis functions from the given sampling values is a fundamental problem. The original Prony method is the main tool to solve this problem, which requires the equispaced sampling values.In this dissertation, we use the equispaced sampling values in the frequency domain after the short time Fourier transform in order to reconstruct some signal expansions, such as the exponential expansions and the cosine expansions. In particular, we consider the case that the phase of the cosine expansion is quadratic. Moreover, we work on the expansion problem based on the eigenfunctions of some linear operators. In addition, when the signals contain two different models, we develop a method that separate the signals in single-models and then solve the problem. We also consider the situation that when some of the sampling values are corrupted.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know