Platinum Group Metal (PGM) free multi metallic nanomaterial: a potential electrocatalyst for Ethanol Oxidation
Turkish Journal of Chemistry, ISSN: 1303-6130, Vol: 49, Issue: 1, Page: 45-53
2025
- 117Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage117
- Downloads72
- Abstract Views45
Article Description
Comprehensive studies of the ethanol oxidation reaction (EOR) have shown high interest in fuel cell technologies. As anode catalysts, introducing platinum group metal (PGM) free catalyst is promising for higher catalytic activity towards the EOR, as these are cost-effective, pollution-tolerant, and suitable for sustainable energy conversion. In this investigation, multi walled carbon nanotube (MWCNT) supported PGM-free electrocatalysts are synthesized by the impregnation reduction method. The atomic structure, composition, and morphology of nanoalloy catalysts are discovered through X-ray diffraction (XRD), Raman spectroscopy and fouriertransform infrared (FTIR) spectroscopy techniques. Electrochemical behaviours have been analysed by cyclic voltammetry (CV), linear sweep voltammetry (LSV), Chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS), which reveal the oxidation kinetics of ethanol in an alkaline medium on the surface of the catalyst. The structure-activity relationship is a portrait of all the physical and electrochemical analyses that assists in exploring the active site of the surface, which facilitates electrooxidation activity. The C/ FeCo catalyst exhibits higher catalytic efficiency and promotes CO removal through a bifunctional mechanism and electronic effect.
Bibliographic Details
The Scientific and Technological Research Council of Turkey (TUBITAK-ULAKBIM) - DIGITAL COMMONS JOURNALS
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know