Concept-based Search Using Parallel Query Expansion
2006
- 11Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage11
- Downloads11
Thesis / Dissertation Description
We address the problem of irrelevant results for short queries on Web search engines. Short queries fail to provide sufficient context to disambiguate possible meanings associated with the search terms resulting in a set of irrelevant pages that the user has to filter through navigation and sometimes examination. First, we predict the potential concept topics, which are the domains for the search terms. This prediction is based on word occurrences and relationships observed in the various domains (categories) of a corpus. Next, we expand the search terms in each of the predicted domains in parallel. We then submit separate queries, specialized for each domain, to a general purpose search engine. The user is presented with categorized search results under the predicted domains. The theoretical foundations of our approach include concept identification in the form of associated terms through Latent Semantic Indexing, in particular the WordSpace model, one sense per collocation and one domain per discourse assumptions, and sense disambiguation through sufficient context. User evaluations of our approach indicate that it helps the users avoid having to examine irrelevant Web search results, especially with shorter queries. Another contribution of our work is the development of a web-based corpus of documents including sufficiently rich collections in multiple subject categories. We also created a mapping between these subject categories from the Open Directory Project and the domains from WordNet Domains.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know