MINIMIZING STRUCTURAL JITTER IN OPTICAL SENSOR SYSTEMS USING PARAMETRIC DYNAMIC RESPONSE OPTIMIZATION
2018
- 18Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage18
- Downloads14
- Abstract Views4
Thesis / Dissertation Description
Deployed in manned and unmanned aircraft, military and commercial ground vehicles, and security and monitoring systems, optical sensor systems are ubiquitous. Developing an optical sensor system includes calculating image motion due to structural dynamics—hereafter, “structural jitter”—and adjusting system design to reduce structural jitter and meet requirements. The current process for adjusting the structural design to reduce structural jitter is manual, labor intensive, and driven mostly by engineering judgment. This paper proposes a well-defined optimization process that provides a more explicit approach to the structural design and likely will reduce labor as the process matures. This project focuses on employing dynamic response optimization to minimize structural jitter caused by random vibration. Investigation of the literature has also shown that performing this optimization during the design phase of an optical path-supporting structure has not been documented previously. This dissertation details the optimization process so that researchers and designers may implement it in their efforts to improve image quality in sensor systems.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know