A study of effect of bond length on bond strength using transient heat transfer analysis
2018
- 12Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage12
- Downloads11
- Abstract Views1
Thesis / Dissertation Description
It is important to understand the mechanical properties of the bonding between the adjacent layers of 3D printed parts build by fused deposition modeling. The bonding process is highly nonlinear and depends on various geometrical and thermal process parameters. This work aims to quantify the degree of bonding by calculating bond potential between the extruded layers using finite element heat transfer analysis. Successive transient analysis were carried out using this model by constantly updating the boundary conditions and geometric model during the deposition of the extruded bead. Temperatures at critical points were calculated over a period to calculate the bond potential and analyze the degree of bonding between layers printed in the z-axis. Furthermore, geometry and heat transfer coefficient were altered to investigate their influence on the bond potential. Finally, the experimental analysis was carried out by printing tensile specimens according to the FE model to investigate any relationship between the calculated bond potential and strength of the FDM parts.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know