Geometric Field Stability and Normal Field Curvature of Solution Sets of Ordinary Differential Equations in Two Variables
2006
- 74Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage74
- Downloads63
- Abstract Views11
Thesis / Dissertation Description
The classical linearization approach to stability theory determines whether or not a system is stable in the vicinity of its equilibrium points. This classical approach partly depends on the validity of the linear approximation. The definition of stability developed in this article takes a different approach and uses a curvature function to assess the relative locations of solutions within a field of solutions (the underlying solution set of the ODE). The present approach involves calculations that directly yield stability information, without having to enter into the often lengthy eigenvalue-eigenvector method. The present results both complement and are compatible with the classical results based on linearization near an equilibrium point.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know