A study on thermal energy storage using open adsorption system
Bulletin of the Faculty of Engineering. Mansoura University, Vol: 43, Issue: 3, Page: 34-43
2020
- 1Citations
- 137Usage
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
- CrossRef1
- Usage137
- Downloads102
- Abstract Views35
- Captures2
- Readers2
Article Description
Theoretical and experimental investigation on the thermal energy storage of an open adsorption system is presented. Laboratory experiments have been conducted, using silica gel as adsorbent, to study the effect of flow rate and inlet relative humidity on the amount of energy stored. The theoretical model, used to describe the mass and energy transfers in the system, was solved using COMSOLTM software. The model was validated against laboratory experiments performed at varying conditions. Temperature and energy density profiles during the adsorption process have been analyzed for various conditions. Results show that the storage density increases with the increase of the flow rate. However, at higher flow rates lower discharge temperatures are obtained. So, an optimization is recommended before choosing the operating flow rate. Furthermore, results show that the higher the air inlet relative humidity, the higher the energy density and the higher the discharge temperature. The maximum energy density obtained for a bed volume of 5.09 10-4 m3 is 325.8 MJ/m3. For the predefined working conditions and assumptions, the numerical solution shows satisfied agreement with the experimental measurements.
Bibliographic Details
Egypts Presidential Specialized Council for Education and Scientific Research
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know