Advancing hurricane prediction models through enhanced physics of the air-sea-wave coupling
2016
- 23Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage23
- Abstract Views23
Article Description
Future improvements of the hurricane model forecast skills must include development of new and enhanced techniques suitable for high-resolution model physics of air-sea interaction. This presentation will discuss major upgrades to the ocean model components and the implementation of the new parameterization of wind stress and air-sea-wave coupling that can accurately capture the physics at the air-sea interface in the NOAA’s GFDL and HWRF operational hurricane prediction models. Some of these upgrades are the results of close collaborative research efforts between the Oceanographic Center at Nova Southeastern University and the Graduate School of Oceanography at University of Rhode Island.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know