Parallel Mining of Association Rules Using a Lattice Based Approach
2009
- 309Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage309
- Downloads283
- Abstract Views26
Thesis / Dissertation Description
The discovery of interesting patterns from database transactions is one of the major problems in knowledge discovery in database. One such interesting pattern is the association rules extracted from these transactions. Parallel algorithms are required for the mining of association rules due to the very large databases used to store the transactions. In this paper we present a parallel algorithm for the mining of association rules. We implemented a parallel algorithm that used a lattice approach for mining association rules. The Dynamic Distributed Rule Mining (DDRM) is a lattice-based algorithm that partitions the lattice into sublattices to be assigned to processors for processing and identification of frequent itemsets. Experimental results show that DDRM utilizes the processors efficiently and performed better than the prefix-based and partition algorithms that use a static approach to assign classes to the processors. The DDRM algorithm scales well and shows good speedup.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know