Improving the design and conduct of aquatic toxicity studies with oils based on 20 years of CROSERF experience
Aquatic Toxicology, ISSN: 0166-445X, Vol: 261, Page: 106579
2023
- 8Citations
- 56Usage
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations8
- Citation Indexes8
- CrossRef8
- Usage56
- Downloads53
- Abstract Views3
- Captures6
- Readers6
Article Description
Laboratory toxicity testing is a key tool used in oil spill science, spill effects assessment, and mitigation strategy decisions to minimize environmental impacts. A major consideration in oil toxicity testing is how to replicate real-world spill conditions, oil types, weathering states, receptor organisms, and modifying environmental factors under laboratory conditions. Oils and petroleum-derived products are comprised of thousands of compounds with different physicochemical and toxicological properties, and this leads to challenges in conducting and interpreting oil toxicity studies. Experimental methods used to mix oils with aqueous test media have been shown to influence the aqueous-phase hydrocarbon composition and concentrations, hydrocarbon phase distribution (i.e., dissolved phase versus in oil droplets), and the stability of oil:water solutions which, in turn, influence the bioavailability and toxicity of the oil containing media. Studies have shown that differences in experimental methods can lead to divergent test results. Therefore, it is imperative to standardize the methods used to prepare oil:water solutions in order to improve the realism and comparability of laboratory tests. The CROSERF methodology, originally published in 2005, was developed as a standardized method to prepare oil:water solutions for testing and evaluating dispersants and dispersed oil. However, it was found equally applicable for use in testing oil-derived petroleum substances. The goals of the current effort were to: (1) build upon two decades of experience to update existing CROSERF guidance for conducting aquatic toxicity tests and (2) to improve the design of laboratory toxicity studies for use in hazard evaluation and development of quantitative effects models that can then be applied in spill assessment. Key experimental design considerations discussed include species selection (standard vs field collected), test substance (single compound vs whole oil), exposure regime (static vs flow-through) and duration, exposure metrics, toxicity endpoints, and quality assurance and control.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0166445X23001820; http://dx.doi.org/10.1016/j.aquatox.2023.106579; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85161293037&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37300923; https://linkinghub.elsevier.com/retrieve/pii/S0166445X23001820; https://nsuworks.nova.edu/occ_facarticles/1359; https://nsuworks.nova.edu/cgi/viewcontent.cgi?article=2359&context=occ_facarticles; https://dx.doi.org/10.1016/j.aquatox.2023.106579
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know