Exploring Interspecific Interactions of Reniform Nematode (Rotylenchulus reniformis) and Host Roots
2018
- 342Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage342
- Downloads272
- Abstract Views70
Thesis / Dissertation Description
The semi-endoparastic reniform nematode (Rotylenchulus reniformis) infects over 300 plant species. Females penetrate host roots and induce formation of complex, multinucleate feeding sites called syncytia. While anatomical changes associated with syncytia morphology are well documented, little is known about their molecular basis or the local impact on root development. Using a soybean (Glycine max) split-root system across a twelve-day time course, we identified over 6,000 genes that were differentially expressed between inoculated and control roots (FDR = 0.01, |log2FC| ≥ 1) and 507 gene sets that were significantly enriched or depleted in inoculated roots (FDR = 0.05). Numerous genes up-regulated during syncytium formation had previously been associated with rhizobia nodulation. These included the nodule-initiating transcription factors CYCLOPS, NSP1, NSP2, and NIN, as well as multiple nodulins associated with the plant-derived peribacteroid membrane. Nodulation-related NIP aquaporins and SWEET sugar transporters, CLAVATA3/ESR-related (CLE) signaling proteins, and cell cycle regulators such as CCS52A and E2F were induced. Greenhouse growth studies showed that the roots of young soybean plants produced more new lateral roots per unit length when infected with reniform nematode. A pre-selected set of 440 genes with documented roles in lateral root formation were examined, and 131were differentially expressed in response to parasitism on at least one sampling date. These included genes for auxin biosynthetic proteins and transporters, as well as transcription factors such as LATERAL ROOT PRIMORDIUM 1, LATERAL ORGAN BOUNDARIES, SOMBRERO, SHORT-ROOT, RPT2a, and several MADS-box genes. Finally, RNAseq data from infected soybean and cotton (Gossypium hirsutum) roots were used to assemble reniform nematode transcriptomes and identify putative nematode effectors based on sequence homology. A total of 3,485 and 4,852 reniform nematode protein-coding genes were assembled from infected soybean and cotton roots, respectively. One hundred and two of these genes shared homology to published plant parasitic nematode effectors, including CLEs, CTLs, FARs, VAPs, cell wall modifying enzymes, and putative secretory proteins of unknown function. The nematode and host genes identified here offer insight into reniform nematode parasitism and provide numerous avenues for further exploration.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know