ESTIMATING AND MITIGATING RADIATED EMISSIONS FROM PCB HEATSINKS
2011
- 1,098Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage1,098
- Downloads1,007
- 1,007
- Abstract Views91
Thesis / Dissertation Description
The advance of VLSI technology requires heatsinks to take away the heat generated by ICs and keep the temperature below an acceptable limit. These metal heatsinks radiate and cause EMI problems when electromagnetic noises are coupled to them. Thus it is important to study the possible radiation of a VLSI heatsink and the effective methods to reduce the radiated emissions. This dissertation includes three chapters on estimating and mitigating VLSI heatsink radiation. In the first chapter, a closed-form expression is derived for determining the maximum possible radiated emissions from a heatsink over a printed circuit board or chassis plane as a function of the maximum voltage between the heatsink and plane. The relevant parameters are the dimensions of the heatsink. The closed-form expression is validated by comparing its results to full-wave simulation results. This analysis was done for rectangular heatsinks, but the results can be applied to other heatsink shapes. The second chapter discusses a method to damp the unintended radiated emissions from PCB-chassis (or heatsink-PCB) resonances with lossy posts mounted near the four corners of the rectangular cavity formed. A simple closed-form expression was derived for determining an optimal series resistance for damping these cavity resonances over a wide range of frequencies. A similar analysis could be done to determine the optimal resistance values for other cavity shapes and mounting post locations. For the 4-post configuration, shorting one or more of the posts does not affect the optimum resistance value for the remaining posts. The third chapter discusses the reduction of a tall heatsink radiation by using shorting posts that bypass some of the noise current to the PCB ground. At high frequencies, the size of a tall heatsink may be comparable to a quarter-wavelength and the heatsink/board geometry can be an efficient antenna. The effectiveness of shorting posts was examined for reducing heatsink radiation. The use of lossy components for damping LC resonances is also discussed.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know