Improvement of Onsite Wastewater Treatment By Use of Electrically Conductive Carbon Cloth
2013
- 272Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage272
- Downloads219
- Abstract Views53
Thesis / Dissertation Description
The purpose of this research is primarily focused on carbon oxidation in domestic septic systems. Small-scale septic waste reactors utilizing electrically conductive carbon cloth were assessed for improving carbon oxidation and therefore the overall efficiency of on-site wastewater treatment systems. A bioelectrochemical system was developed to enhance carbon oxidation in septic systems using electrically conductive carbon cloth as an anode/cathode bridge to transfer electrons from strictly anoxic septic wastewater to an oxic system outside of the septic reactor. This 'septic snorkel' (so named since the system 'breathes' via the carbon cloth extends into an aerobic zone) was designed to lower the carbon loading on the leach field, while being simple to deploy at the field level, which would be necessary for regulatory and stakeholder approval. The concept is predicated on previously published work that demonstrated Fe(III) amendment to septic wastewater increased carbon mineralization. Data with Fe(III) amendment (an analogous system) demonstrated that mineralization of 14C-labeled acetate, lactate, propionate, starch, glucose, and oleic acid increased by as much as 100%, while completely suppressing methane production. Bench scale results using different carbon cloth setups suggested that complete and open circuit configurations improved soluble COD removal by 25% and 23% respectively. Select 14C-labeled compounds were also tested using the carbon cloth system. Interestingly, reactors with carbon cloth alone (no circuitry) showed the highest mineralization for all 14C-labeled compounds. Increases in mineralization ranged from 16% to 82%.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know