Feasibility Study of Porous Media Compressed Air Energy Storage In South Carolina, United States of America
2015
- 753Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage753
- Downloads620
- Abstract Views133
Thesis / Dissertation Description
Renewable Energy Systems (RES) such as solar and wind, are expected to play a progressively significant role in electricity production as the world begins to move away from an almost total reliance on nonrenewable sources of power. In the US there is increasing investment in RES as the Department of Energy (DOE) expands its wind power network to encompass the use of offshore wind resources in places such as the South Carolina (SC) Atlantic Coastal Plain. Because of their unstable nature, RES cannot be used as reliable grid-scale power sources unless power is somehow stored during excess production and recovered at times of insufficiency. Only two technologies have been cited as capable of storing renewable energy at this scale: Pumped Hydro Storage and Compressed Air Energy Storage (CAES). Both CAES power plants in existence today use solution-mined caverns as their storage spaces. This project focuses on exploring the feasibility of employing the CAES method to store excess wind energy in sand aquifers. The numerical multiphase flow code, TOUGH2, was used to build models that approximate subsurface sand formations similar to those found in SC. Although the aquifers of SC have very low dips, less than 10, the aquifers in this study were modeled as flat, or having dips of 00. Cycle efficiency is defined here as the amount of energy recovered compared to the amount of energy injected. Both 2D and 3D simulations have shown that the greatest control on cycle efficiency is the volume of air that can be recovered from the aquifer after injection. Results from 2D simulations showed that using a dual daily peak load schedule instead of a single daily peak load schedule increased cycle efficiency as do the following parameters: increased anisotropy, screening the well in the upper portions of the aquifer, reduced aquifer thickness, and an initial water displacement by the continuous injection of air for at least 60 days. Aquifer permeability of 1x10-12 m2 produced a cycle efficiency of 80%. A decrease of permeability to 1x10-13 m2 reduced efficiency to 70%, while an increase to 1x10-11 m2 seemed to enhance efficiency, but significantly reduced the volume of air that could be injected and recovered. The highest cycle efficiency that could be achieved using the 3D simulation, without depleting aquifer pressure to preset limits, was 80%. Attempts to improve cycle efficiency compromised air recovery. Further work is necessary to determine the effects of low aquifer dips on air recovery and cycle efficiency.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know