Phase Desynchronization in Pulse-Coupled Oscillator Networks: A New Algorithm and Approach
2017
- 246Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage246
- Downloads198
- Abstract Views48
Thesis / Dissertation Description
In this thesis, we present a novel approach for achieving phase desynchronization in a pulse-coupled oscillator network. Ensuring phase desynchronization is a difficult problem, and existing results are constrained to a completely interconnected network and a fixed number of oscillators. Our approach is more robust than previous approaches, removing the constraint of a fixed number of oscillators. The removal of this constraint is significant because it allows the network to receive and drop nodes freely without any change to the phase update strategy. Also, to our knowledge, our approach is the first to prove the convergence to the desynchronized state for a topology that is more general than the all-to-all topology. More specifically, our approach is applicable to any circulant and symmetric network topology, including the circulant symmetric ring topology. Rigorous mathematical proofs are provided to support the result that any circulant symmetric network with ordered phases under our proposed algorithm will converge to uniform phase desynchronization. Simulation results are presented to demonstrate the algorithm's performance, as well as experimental results on a physical system to further illustrate applications of pulse-coupled oscillator networks.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know