Assessing Key Factors Influencing Fire-Induced Spalling of Concrete Using Explainable Artificial Intelligence (XAI)
2023
- 353Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage353
- Downloads228
- Abstract Views125
Thesis / Dissertation Description
This thesis adopts eXplainable Artificial Intelligence (XAI) to identify the key factors influencing the fire-induced spalling of concrete and to extract new insights into the fire-induced spalling phenomenon. In this pursuit, an XAI model was developed, validated, and then augmented with two explainability measures, namely, Shapley Additive exPlanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME). The proposed XAI model not only can predict the fire-induced spalling with high accuracy (i.e., >92 %) but can also articulate the reasoning behind its predictions (as in, the proposed model can specify the rationale for each prediction instance); thus, providing us with valuable insights into the factors, as well as relationships between these factors, leading to spalling. This model was created and validated using a comprehensive database, which reports on 43 influencing factors spanning material, mechanical, and geometrical properties, as well as environmental and casting conditions. Finally, the validated XAI model was utilized to contrast and quantify the most important factors (found in the spalling-based knowledge domain and literature to identify concrete mixtures with a low tendency to spall under elevated temperatures.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know