Converging Human Intelligence With AI Systems to Advance Flood Evacuation Decision Making
2023
- 183Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage183
- Downloads100
- Abstract Views83
Thesis / Dissertation Description
The powers that artificial intelligence (AI) has developed are astounding, with recent success in integrating into a human cognitive workflow. AI will attain its full potential only if, as part of its intelligence, it also actively teams up with humans to co-create solutions. Combining AI simulation with human understanding and strategic abilities through data convergence may optimize the process and provide a capacity akin to "teaming intelligence." This thesis will introduce the concepts of Human AI Convergence (HAC) capabilities for flood evacuation decision-making. The concept introduced in this thesis is the first step toward the HAC concept in weather disaster applications. This research demonstrates a synergy between humans and AI by integrating the data produced by humans through social media with an AI system to enhance a flood evacuation decision-making problem. The prediction from Long short-term memory (LSTM) and a river hydraulic model, i.e., Height Above Nearest Drainage (HAND), is integrated with human data from X (previously Twitter) to visualize flood inundation areas, which acts as a 3rd party agent for a HAC system. The goal is to synthesize and analyze HAC competence in flood evacuation emergency management and harness the full potential of AI as a partner in real-time planning and decision-making. This thesis has explored why HAC intelligence is essential to emergency planning and decision-making, providing a general structure for researchers to use HAC to devise effective systems that cooperate well and evaluate state-of-the-art, and, in doing so, providing a research agenda and a roadmap for future flood evacuation emergency management, rescue, and decision making. This state-of-the-art flood evacuation product stands to advance the frontier of human-AI collaborative research significantly.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know