Reconstructed refractive index spatial maps and method with algorithm
2008
- 36Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage36
- Downloads30
- Abstract Views6
Patent Description
The invention provides a means to produce reconstructed refractive index spatial maps that reveal and allow visual separation of normal soft tissue and certain types of tumors. Detector fiber optic bundles positioned on the surface of a soft tissue organ receive and transmit scattered light data, from light in the near-infrared portion of the spectrum delivered to the surface of the organ by separate fiber optic bundles to a computer. Based on an established grid and certain assumed values, the data are analyzed by means of a complex algorithm to produce calculated refractive index values. Through iteration, the values are recalculated to minimize the difference between the observed scattering and calculated values to yield a stable map indicating spatial variation in refractive index and such variation in the form of displayed images indicates the presence of tumors in normal soft tissue.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know