Session 12: Forensic Handwriting Identification using Random Forests and Score-based Likelihood Ratios
2022
- 45Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage45
- Abstract Views45
Interview Description
Handwriting analysis is conducted by forensic document examiners who can visually recognize characteristics of writing to assess the writership propositions. Recently, there have been incentives to investigate how to quantify the similarity between two written documents to support the conclusions drawn by experts. To this end, we use an automatic algorithm within the open-source ‘handwriter’ package in R to decompose a handwritten sample into small graphical units of writing. These graphs are sorted into exemplar groups or clusters. We assume that the frequency with which a writer produces graphs to each cluster is characteristic of their handwriting. Then, given handwritten document pairs, we can use the difference in their vectors of cluster frequencies as the input for a random forest. The output from the random forest is used as the similarity score. We estimate the densities of the similarity scores computed from multiple pairs of documents where the source attribution is known and use them to obtain score-based likelihood ratios (SLRs). We find that several different types of SLRs can successfully indicate the strength of evidence for writership determinations.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know