Simple Analytic Performance Models for Streaming Data Applications Deployed on Diverse Architectures
2013
- 547Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage547
- Downloads530
- Abstract Views17
Report Description
Modern hardware is inherently heterogeneous. With heterogeneity comes multiple abstraction layers that hide underlying complex systems. While hidden, this complexity makes quantitative performance modeling a difficult task. Designers of high-performance streaming applications for heterogeneous systems must contend with unpredictable and often non-generalizable models to predict performance of a particular application and hardware mapping. This paper outlines a computationally simple approach that can be used to model the overall throughput and buffering needs of a streaming application on heterogeneous hardware. The model presented is based upon a hybrid maximum flow and decomposed discrete queueing model. The utility of the model is assessed using a set of real and synthetic benchmarks with model predictions compared to measured application performance.
Bibliographic Details
https://openscholarship.wustl.edu/cse_research/100; https://openscholarship.wustl.edu/cgi/viewcontent.cgi?article=1099&context=cse_research; http://dx.doi.org/10.7936/k7tx3ck9; https://doi.org/10.7936%2Fk7tx3ck9; https://dx.doi.org/10.7936/k7tx3ck9; https://openscholarship.wustl.edu/cse_research/100/
Washington University in St. Louis Libraries
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know