Hierarchical Temporal Memory Cortical Learning Algorithm for Pattern Recognition on Multi-core Architectures
2011
- 2,467Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage2,467
- Downloads1,589
- 1,589
- Abstract Views878
Report Description
Strongly inspired by an understanding of mammalian cortical structure and function, the Hierarchical Temporal Memory Cortical Learning Algorithm (HTM CLA) is a promising new approach to problems of recognition and inference in space and time. Only a subset of the theoretical framework of this algorithm has been studied, but it is already clear that there is a need for more information about the performance of HTM CLA with real data and the associated computational costs. For the work presented here, a complete implementation of Numenta's current algorithm was done in C++. In validating the implementation, first and higher order sequence learning was briefly examined, as was algorithm behavior with noisy data doing simple pattern recognition. A pattern recognition task was created using sequences of handwritten digits and performance analysis of the sequential implementation was performed. The analysis indicates that the resulting rapid increase in computing load may impact algorithm scalability, which may, in turn, be an obstacle to widespread adoption of the algorithm. Two critical hotspots in the sequential code were identified and a parallelized version was developed using OpenMP multi-threading. Scalability analysis of the parallel implementation was performed on a state of the art multi-core computing platform. Modest speedup was readily achieved with straightforward parallelization. Parallelization on multi-core systems is an attractive choice for moderate sized applications, but significantly larger ones are likely to remain infeasible without more specialized hardware acceleration accompanied by optimizations to the algorithm.
Bibliographic Details
http://archives.pdx.edu/ds/psu/7090; http://dx.doi.org/10.15760/etd.202; https://pdxscholar.library.pdx.edu/open_access_etds/202; https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=1201&context=open_access_etds; https://dx.doi.org/10.15760/etd.202; https://pdxscholar.library.pdx.edu/open_access_etds/202/
Portland State University Library
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know