Investigation of Jet Dynamics in Cross-Flow: Quantifying Volcanic Plume Behavior
2016
- 343Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage343
- Downloads274
- Abstract Views69
Report Description
Volcanic eruption columns inject high concentrations of ash into the atmosphere. Some of this ash is carried downwind forming ash clouds in the atmosphere that are hazardous for private and commercial aviation. Current models rely on inputs such as plume height, duration, eruption rate, and meteorological wind fields. Eruption rate is estimated from plume height using relations that depend on the rate of air entrainment into the plume, which is not well quantified. A wind tunnel experiment has been designed to investigate these models by injecting a vertical air jet into a cross-flow. The ratio of the cross-flow and jet velocities is varied to simulate a weak plume, and flow response is measured using particle image velocimetry. The plumes are characterized and flow data relative to the centerline is examined to measure the growth of weak plumes and the entrainment velocity along its trajectory. It was found that cross-flow recirculates behind the jet and entrainment occurs both up and downstream of the jet. Analysis of the generation of turbulence enhanced results by identifying the transition point to bending plume and the growth of the shear layer in a bending plume. This provides information that can be used to improve models of volcanic ash concentration changes in the atmosphere.
Bibliographic Details
http://archives.pdx.edu/ds/psu/18922; http://dx.doi.org/10.15760/etd.3294; https://pdxscholar.library.pdx.edu/open_access_etds/3314; https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=4323&context=open_access_etds; https://dx.doi.org/10.15760/etd.3294; https://pdxscholar.library.pdx.edu/open_access_etds/3314/
Portland State University Library
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know