Inception modules enhance brain tumor segmentation
Frontiers in Computational Neuroscience, ISSN: 1662-5188, Vol: 13, Page: 44
2019
- 50Citations
- 32Usage
- 62Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations50
- Citation Indexes50
- 50
- CrossRef6
- Usage32
- Downloads30
- Abstract Views2
- Captures62
- Readers62
- 62
Article Description
Magnetic resonance images of brain tumors are routinely used in neuro-oncology clinics for diagnosis, treatment planning, and post-treatment tumor surveillance. Currently, physicians spend considerable time manually delineating different structures of the brain. Spatial and structural variations, as well as intensity inhomogeneity across images, make the problem of computer-assisted segmentation very challenging. We propose a new image segmentation framework for tumor delineation that benefits from two state-of-the-art machine learning architectures in computer vision, i.e., Inception modules and U-Net image segmentation architecture. Furthermore, our framework includes two learning regimes, i.e., learning to segment intra-tumoral structures (necrotic and non-enhancing tumor core, peritumoral edema, and enhancing tumor) or learning to segment glioma sub-regions (whole tumor, tumor core, and enhancing tumor). These learning regimes are incorporated into a newly proposed loss function which is based on the Dice similarity coefficient (DSC). In our experiments, we quantified the impact of introducing the Inception modules in the U-Net architecture, as well as, changing the objective function for the learning algorithm from segmenting the intra-tumoral structures to glioma sub-regions. We found that incorporating Inception modules significantly improved the segmentation performance (p < 0.001) for all glioma sub-regions. Moreover, in architectures with Inception modules, the models trained with the learning objective of segmenting the intra-tumoral structures outperformed the models trained with the objective of segmenting the glioma sub-regions for the whole tumor (p < 0.001). The improved performance is linked to multiscale features extracted by newly introduced Inception module and the modified loss function based on the DSC.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85069514092&origin=inward; http://dx.doi.org/10.3389/fncom.2019.00044; http://www.ncbi.nlm.nih.gov/pubmed/31354462; https://www.frontiersin.org/article/10.3389/fncom.2019.00044/full; https://rdw.rowan.edu/engineering_facpub/237; https://rdw.rowan.edu/cgi/viewcontent.cgi?article=1236&context=engineering_facpub; https://dx.doi.org/10.3389/fncom.2019.00044; https://www.frontiersin.org/articles/10.3389/fncom.2019.00044/full
Frontiers Media SA
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know