Optimal band selection for hyperspectral remote sensing of aquatic benthic features - A wavelet filter window approach
Proceedings of SPIE - The International Society for Optical Engineering, ISSN: 0277-786X, Vol: 6360
2006
- 6Citations
- 38Usage
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations6
- Citation Indexes6
- Usage38
- Downloads38
- Captures6
- Readers6
Conference Paper Description
This paper describes a wavelet based approach to derivative spectroscopy. The approach is utilized to select, through optimization, optimal channels or bands to use as derivative based remote sensing algorithms. The approach is applied to airborne and modeled or synthetic reflectance signatures of environmental media and features or objects within such media, such as benthic submerged vegetation canopies. The technique can also applied to selected pixels identified within a hyperspectral image cube obtained from an board an airborne, ground based, or subsurface mobile imaging system. This wavelet based image processing technique is an extremely fast numerical method to conduct higher order derivative spectroscopy which includes nonlinear filter windows. Essentially, the wavelet filter scans a measured or synthetic signature in an automated sequential manner in order to develop a library of filtered spectra. The library is utilized in real time to select the optimal channels for direct algorithm application. The unique wavelet based derivative filtering technique makes us of a translating, and dilating derivative spectroscopy signal processing (TDDSSP®) approach based upon remote sensing science and radiative transfer processes unlike other signal processing techniques applied to hyperspectral signatures.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=33845619079&origin=inward; http://dx.doi.org/10.1117/12.687494; http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.687494; https://repository.fit.edu/oems_faculty/170; https://repository.fit.edu/cgi/viewcontent.cgi?article=1158&context=oems_faculty; https://dx.doi.org/10.1117/12.687494; https://www.spiedigitallibrary.org/access-suspended
SPIE-Intl Soc Optical Eng
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know