A Survey of Qubit Routing Algorithms
2023
- 567Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage567
- Downloads444
- Abstract Views123
Thesis / Dissertation Description
Before applications actually run on quantum hardware, the design of the quantum application and its pre-processing take place in the classical environment. Transforming a quantum circuit into a form that is able to run on quantum hardware, known as transpilation, is a crucial process in performing quantum experiments. Routing is a particularly important and computationally expensive part of the transpilation process. The routing process can alter a circuit’s accuracy, execution time, quantum gate count, and depth. Several routing algorithms exist that aim to optimize some portion of the routing process. There are many variables to consider when choosing an optimal routing algorithm, such as routing time, circuit accuracy, gate count, circuit execution time, and more. Identifying what routing algorithm is best for a given quantum experiment based on various properties can allow researchers to make informed routing decisions, as well as optimize target aspects of their work. This thesis draws connections between the properties of circuits, hardware, and routing algorithms to identify when a specific routing algorithm will outperform the others.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know