Smooth flexible models of nonhomogeneous Poisson processes fit to one or more process realizations
2009
- 403Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage403
- Downloads386
- Abstract Views17
Thesis / Dissertation Description
Simulation is a technique of creating representations or models of real world systems or processes and conducting experiments to predict behavior of actual systems. Input modeling is a critical aspect of simulation modeling. Stochastic input models are used to model various aspects of the system under uncertainty including process times and interarrival times. This research focuses on input models for nonstationary arrival processes that can be represented as nonhomogeneous Poisson processes (NHPPs). In particular, a smooth flexible model for the mean-value function (or integrated rate function) of a general NHPP is estimated. To represent the mean-value function, the method utilizes a specially formulated polynomial that is constrained in least-squares estimation to be nondecreasing so the corresponding rate function is nonnegative and continuously differentiable. The degree of the polynomial is determined by applying a modified likelihood ratio test to a set of transformed arrival times resulting from a variance stabilizing transformation of the observed data. Given the degree of polynomial, final estimates of the polynomial coefficients are obtained from original arrival times using least-squares estimation. The method is extended to fit an NHPP model to multiple observed realizations of a process. In addition, the method is adapted to a multiresolution procedure that effectively models NHPPs with long term trend and cyclic behavior given multiple process realizations. An experimental performance evaluation is conducted to determine the capabilities and limitations of the NHPP fitting procedure for single and multiple realizations of test processes. The method is implemented in a Java-based programming environment along with a web interface that allows user to upload observed data, fit an NHPP, and generate realizations of the fitted NHPP for use in simulation experiments.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know