Aptamer Functionalized Zinc Oxide Field Effect Transistors For Odor Detection
2019
- 387Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage387
- Downloads280
- Abstract Views107
Thesis / Dissertation Description
Odor detection and identification are complex processes, and tasks that currently only animals do well. There is a pressing need for an electronic nose, or eNose, with good sensitivity, selectivity, and speed that mimics that ability. Food quality control operations, environmental sensing, occupational safety, and the defense sectors all require systems that can rapidly and reliably detect trace levels of volatile organic compounds. The goal of this work is to create a biologically inspired device which can accurately detect and identify odors at concentrations consistent with the most sensitive biological systems.In order to mimic a natural olfactory system, we replaced the biological components of the olfactory system with synthetic components. If successful, this approach would provide a basis for a computational strategy that identifies odor based on combinatorial patterns of receptor activation, so that the number of recognizable odors exceeds the number of receptors.Our efforts produced an aptamer-decorated zinc oxide field effect transistor (Apta-FET) that shows great sensitivity to target compounds, but limited selectivity. We demonstrated that aptamers attached to a FET respond to targets in a concentration-dependent manner, and that this response can be measured electrically. The limited selectivity of our device highlights the need for many different kinds of aptamers within the same device, as well as the need for more advanced computational analysis of the output data. It is our hope that these hurdles will be overcome.
Bibliographic Details
West Virginia University Libraries
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know