Deriving statistical inference from the application of artificial neural networks to clinical metabolomics data
2020
- 343Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage343
- Downloads265
- Abstract Views78
Thesis / Dissertation Description
Metabolomics data are complex with a high degree of multicollinearity. As such, multivariate linear projection methods, such as partial least squares discriminant analysis (PLS-DA) have become standard. Non-linear projections methods, typified by Artificial Neural Networks (ANNs) may be more appropriate to model potential nonlinear latent covariance; however, they are not widely used due to difficulty in deriving statistical inference, and thus biological interpretation. Herein, we illustrate the utility of ANNs for clinical metabolomics using publicly available data sets and develop an open framework for deriving and visualising statistical inference from ANNs equivalent to standard PLS-DA methods.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know