PlumX Metrics
Embed PlumX Metrics

Deriving statistical inference from the application of artificial neural networks to clinical metabolomics data

2020
  • 0
    Citations
  • 343
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Thesis / Dissertation Description

Metabolomics data are complex with a high degree of multicollinearity. As such, multivariate linear projection methods, such as partial least squares discriminant analysis (PLS-DA) have become standard. Non-linear projections methods, typified by Artificial Neural Networks (ANNs) may be more appropriate to model potential nonlinear latent covariance; however, they are not widely used due to difficulty in deriving statistical inference, and thus biological interpretation. Herein, we illustrate the utility of ANNs for clinical metabolomics using publicly available data sets and develop an open framework for deriving and visualising statistical inference from ANNs equivalent to standard PLS-DA methods.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know