Experimental study on sand anti-seepage by microorganism–bentonite combined mineralization
Vol: 44, Issue: 8
2023
- 83Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage83
- Downloads44
- Abstract Views39
Article Description
The seepage of sandy foundation would lead to the collapse of foundation and the destruction of engineering structure. A series of large-scale sand column seepage model experiments was carried out by using microorganism–bentonite combined mineralization method. The in-depth discussion was conducted for the effects of sand particle size, slurry liquid-to-solid ratio and treatment cycles on the permeability, internal erosion characteristic and bentonite and calcium carbonate precipitate distribution of sand. Moreover, the stability of sealing and the microstructure were thoroughly investigated, and the treatment effect of microorganism–bentonite combined mineralization method was evaluated. It was found that this method could improve the seepage prevention effect and the stability of sealing of sand, and the permeability coefficient of samples could be reduced by up to 4 orders of magnitude. In addition, the erosion rate during the permeation process was also reduced by several times and reached as low as 0.51 g/(s·m2). Based on the effect of bentonite and calcium carbonate precipitate on sand sealing, the anti-seepage mechanism of microorganism–bentonite combined mineralization method was analyzed. The results show that the microorganism–bentonite combined mineralization method was feasible and efficient in the seepage control of sand, which will provide an important reference for the application of microbial mineralization technology to addressing anti-seepage problems.
Bibliographic Details
https://rocksoilmech.researchcommons.org/journal/vol44/iss8/5; https://rocksoilmech.researchcommons.org/cgi/viewcontent.cgi?article=1398&context=journal; http://dx.doi.org/10.16285/j.rsm.2022.6325; https://dx.doi.org/10.16285/j.rsm.2022.6325; https://www.chndoi.org/Resolution/Handler?doi=10.16285/j.rsm.2022.6325
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know