Discrete element method based investigation on displacement and bearing characteristics of pile foundation under seepage erosion
Vol: 45, Issue: 4
2024
- 41Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage41
- Downloads31
- Abstract Views10
Article Description
With the increasing complexity of the three dimensional cross distribution system of pile foundations and tunnels in the urban underground space, the stability of the pile foundation caused by tunnel seepage erosion becomes more and more prominent. However, the current research mainly focuses on the mechanism of erosion induced by defective tunnels, and little on its inte raction with the adjacent pile foundation. Thereby, based on the seepage erosion mechanism revealed by the physical model test, the erosion induced stratum form is quantitatively characterized by establishing the critical fine particle content expression. Subsequently, a multi-zone eroded strata model is simulated by the random and quantitative removal of fine particles in the DEM domain, and then the erosion response characteristics of the foundation under different positions, loads, sinking methods and types are analyzed. The results show that the pile foundation has different degrees of subsidence under different erosion conditions, and tilts to the eroded area under the drive of unbalance force on its eroded position. After the erosion induced reduction, the pile tip resistance increases gradually with the subsidence, but the loss of lateral frictional resistance is basically unrecoverable. In addition, the changing mode of displacement and resistance of the pile is basically the same under different sinking methods and loads, only different in the changed amount. Compared with the single pile, pile group foundation has a better erosion resistance.
Bibliographic Details
https://rocksoilmech.researchcommons.org/journal/vol45/iss4/8; https://rocksoilmech.researchcommons.org/cgi/viewcontent.cgi?article=1482&context=journal; http://dx.doi.org/10.16285/j.rsm.2023.5581; https://dx.doi.org/10.16285/j.rsm.2023.5581; http://rocksoilmech.whrsm.ac.cn/EN/10.16285/j.rsm.2023.5581
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know