Change-Point Methods for Overdispersed Count Data
2007
- 144Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage144
- Downloads119
- Abstract Views25
Thesis / Dissertation Description
A control chart is often used to detect a change in a process. Following a control chart signal, knowledge of the time and magnitude of the change would simplify the search for and identification of the assignable cause. In this research, emphasis is placed on count processes where overdispersion has occurred. Overdispersion is common in practice and occurs when the observed variance is larger than the theoretical variance of the assumed model. Although the Poisson model is often used to model count data, the two-parameter gamma-Poisson mixture parameterization of the negative binomial distribution is often a more adequate model for overdispersed count data. In this research effort, maximum likelihood estimators for the time of a step change in each of the parameters of the gamma-Poisson mixture model are derived. Monte Carlo simulation is used to evaluate the root mean square error performance of these estimators to determine their utility in estimating the change point, following a control chart signal. Results show that the estimators provide process engineers with accurate and useful estimates for the time of step change. In addition, an approach for estimating a confidence set for the process change point will be presented.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know