A Comparative Evaluation of the Detection and Tracking Capability Between Novel Event-Based and Conventional Frame-Based Sensors
2020
- 2,815Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage2,815
- Downloads2,237
- 2,237
- Abstract Views578
Thesis / Dissertation Description
Traditional frame-based technology continues to suffer from motion blur, low dynamic range, speed limitations and high data storage requirements. Event-based sensors offer a potential solution to these challenges. This research centers around a comparative assessment of frame and event-based object detection and tracking. A basic frame-based algorithm is used to compare against two different event-based algorithms. First event-based pseudo-frames were parsed through standard frame-based algorithms and secondly, target tracks were constructed directly from filtered events. The findings show there is significant value in pursuing the technology further.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know